Multiscale Modeling of Functionally Graded Hybrid Composites and Joints

Texas A&M University
- Paul Cizmas (Aerospace Engineering)
- Xin-Lin Gao (Mechanical Engineering)
- Dimitris Lagoudas (Aerospace Engineering)
- Ozden Ochoa (Mechanical Engineering)
- J. N. Reddy (Mechanical Engineering)
- John Whitcomb (Aerospace Engineering)

University of Illinois – UC
- Philippe Geubelle (Aerospace Engineering)

Virginia Tech
- Gary Seidel (Aerospace & Ocean Engg)
Functionally Graded Hybrid Composites (FGHCs) – The concept

Materials

- Oxide ceramic
- Functionally graded ceramic/metal composite (GCMeC)
- Polymer matrix composite (PMC)

Function

- Thermal/Environmental Barrier Coating (Al₂O₃, ZrO₂, PS-ZrO₂)
- Self-healing of Protective Coating
- Gradual Change in Thermal Expansion
- Thermal Management
- Mechanical Damping
- Compressive Stress on Ceramic
- Load Bearing
- Host Sensors
- Damage Propagation Barrier

*15 µm thick protective Al₂O₃ surface layer formed after 10,000 heating cycles of Ti₂AlC
*Ti₂AlC (light) + γTiAl (dark) as example of MAX phase composite
*Actively Cooled PMC with microvascular cooling functionality and/or High Temperature PMCs with polyimide matrices
Wide Range of Scales

Fuzzy fiber

Seidel

Gao
Geubelle
Lagoudas
Whitcomb

Optimize FGHC

1000°C

100μm

GCMeC

PMC

300-400°C

Impact

Cizmas

Ochoa
Whitcomb

Reddy

Optimize FGHC

AFOSR-MURI
Functionally Graded Hybrid Composites
Overview of Goals

• Predict performance of material and components fabricated from FGHC
• Develop strategies for joining parts
• Expedite mechanical and thermal design of functionally graded hybrid composite (FGHC)
• Define in-flight mechanical and thermal loads
Perspectives

- Scales: molecular dynamics
 micromechanics
 mesomechanics
 specimens (e.g. DCB)
 components

- Material models: mechanical, thermal, electrical
 linear elastic
 viscoplastic
 progressive damage
 shape memory

- Loads: steady-state mechanical and thermal
 transient mechanical and thermal
 impact
 aeroelastic
Modeling GCMeC as Interpenetrating Phase Composite

3-D Preform

Preform as a random 3-D open-cell foam

SEM micrograph of Al$_2$O$_3$ preform

Micro-CT scan image of preform

(Jhaver and Tippur, MSE-A, 2009)

(Colombo & Hellmann, Mat. Res. Innovat., 2002)
Micromechanical Modeling of Interpenetrating Phase Composite (IPC)

- Unit cell-based models: unable to account for random features in IPCs

- Proposed work
 - Extracting microstructural data from actual GCMeC using X-ray micro-CT
 - Developing new unit cell models incorporating microstructural features of GCMeC
 - Developing random cell models including hundreds of cells that are irregular in cell shape, non-uniform in strut cross section area, and different in porosity by using the Voronoi tessellation technique and the finite element method with periodic B.C.s
 - Performing parametric studies of composites containing various candidate constituent materials and different topological features to identify an optimal design of GCMeC
Random Cell Model

- **Periodic random models – Preliminary Work**
 - Start with **reference model**: structure with regular cell shapes and uniform SCSAs
 - Construct from a set of **periodically located seeds** using **Voronoi tessellation** technique

![Reference (a = 0) | Random (a = 0.5) | Random (a = 1.0)](image)

Coordinate perturbations of a seed

\[
x_i = \bar{x}_i + a(d_0 \cos \theta_i) \varphi_i,
\]

\[
y_i = \bar{y}_i + a(d_0 \sin \theta_i) \varphi_i,
\]

\[\theta_i \in [0, 2\pi], \quad \varphi_i \in [-1, 1], \quad a \in [0, 1]\]

(Li, Gao and Subhash, IJSS, 2005; JMPS, 2006)
Actively Cooled 3D Woven PMC

• Computational design of microvascular networks embedded in actively cooled 2D and 3D woven PMC
• Prediction of homogenized thermo-mechanical response of composite with embedded cooling network
• Technical challenges
 • Accurate representation of composite microstructure
 • Definition of network template compatible with microstructure and manufacturing constraints
 • Problem size
 • Validation with thermal and constitutive/failure assessments (White and Sottos)
• Multiscale thermal and structural modeling of AC-PMC
Related Work: Computational Design of Microvascular Polymer

- Multiphysics modeling and optimization of 2D microvascular networks for actively cooled polymers
 - **Generalized finite element** (GFEM) modeling of thermal response of polymer components with embedded microvascular network
 - Multi-objective/constraint NSGA-II **genetic algorithm** for **discrete optimization** problem with very large design space

- GFEM modeling of thermal response of epoxy with 4-level branched cooling network

- Active cooling of polymer component with two localized heat sources
Viscoplastic Behavior of High-Temperature Active Layers

Use shape memory effect to absorb energy and induce compressive stresses in ceramic

- High temperature => viscoplastic response becomes an important issue for the metallic constituent
- Creep is directly coupled with the transformation behavior of high-temperature SMAs

- Characterize overall creep behavior of GCMeC
- Optimize microstructure with respect to its inelastic performance
- Obtain effective creep properties by extending multiscale homogenization techniques
Multiscale Analysis of Progressive Damage in FGHC

- Damage mechanics algorithms (improve accuracy)
- Expedite analysis to facilitate parametric study
 - Algorithms to reduce computational cost (human and cpu time & memory)
 - Finite elements w/ internal microstructure
 - Alternative homogenization schemes
 - GFEM
 - Parallel computation
- Configurations
 - Micro (e.g. fiber/matrix)
 - Meso (e.g. textile unit cell)
 - Macro (e.g. DCB)
Multi-scale/Multi-field Modeling of Damage

Damage creates new pathways for diffusion

\[D_{ij} = D_{ij}(\gamma) \]

Oxidation/Diffusion analysis

\[\frac{\partial C}{\partial t} + \frac{\partial}{\partial X_i} J_i + R = 0 \]

\[R = \left(\frac{\phi - \phi_{ox}}{1 - \phi_{ox}} \right) R_0(T) f(C) \]

\[\phi = \min \left\{ \phi_{ox}, \left(1 - \int_0^t \alpha(\zeta) R(\zeta) d\zeta \right) \right\} \]

\[D_{ij}^* = \left(D_{ij} \right)_{un} \left(\frac{\phi - \phi_{ox}}{1 - \phi_{ox}} \right) + \left(D_{ij} \right)_{ox} \left(\frac{1 - \phi}{1 - \phi_{ox}} \right) \]

Stress analysis

\[C_{ij} = C_{ij}(\phi) \]

Degrade mechanical properties

Homogenization

Tow Architecture

Micromechanics

... also, heat transfer
Fuzzy Fibers for Structural Health Monitoring

‘Fuzzy’ fibers: SiC fiber core with carbon nanotubes grown radially along fiber length

- Develop multiscale model correlating changes in electromechanical properties with damage evolution within nanocomposite interphase of fuzzy fiber under quasi-static mechanical and thermal cycling
- Explore design space for fuzzy fibers as SHM sensors through correlation of fuzzy fiber design parameters with sensing properties
- Integrate multiscale model for fuzzy fibers with higher length scale models for application in full multiscale model for FGHC
Nanocomposite-based SHM: Key Challenges

- Adaptive multiscale computational micromechanics tools which integrate a) molecular dynamics b) finite element analysis, and c) homogenization techniques
- CNT-Polymer mechanical and thermal interface effects into continuum level models (inelastic cohesive zone models)
- Incorporation of nanoscale effects of electron hopping and interfacial thermal resistance
- Incorporation of polymer damage evolution model in nanocomposite interphase
- Incorporation of electromechanical properties of CNTs and its influence on fuzzy fiber SHM capabilities

Influence of interfacial thermal resistance on nanocomposite thermal conductivity
Integrity of Interfaces

Assist the design of joints tailored for multiple interfaces present in multilayered system

- MAX - Hybrid Composite
- Metal - Laminates (TiGr)
- PMC – Metal (Ti)

✓ FEA models based on the microscopy and micro-CT observations of functionally gradient interfaces to integrate geometric and material heterogeneity

✓ Mechanical and thermal compatibility and integrity of interfaces addressed through thermo-oxidative response to gain insight to damage mechanisms
Aerothermo-elasticity

- Predict aerothermoelastic response using a high-fidelity, non-linear aeroelastic solver for two configurations
 - Canonical double-wedged wing
 - Typical hypersonic vehicle
- Evaluate thermal effects on AE response including material degradation
- Assess effect of elastic deformation on aerodynamic heating
- Evaluate impact of inertial effects in pre-flutter aerothermoelastic analysis

- Augment in-house AE solver that uses a RANS flow model and FEM structural solver (including thermal stresses and material degradation)
- Include heat transfer in flow/structure coupling
Summary

• A wide range of
 – Material systems
 – Numerical techniques
 – Length and time scales

• Expected outcome: guiding the design of functionally graded hybrid composite for hypersonic vehicle application